The synthetic division table is:
$$ \begin{array}{c|rrrr}110&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & 110& 11825& \color{black}{1298935} \\ \hline &\color{blue}{1}&\color{blue}{\frac{ 215 }{ 2 }}&\color{blue}{\frac{ 23617 }{ 2 }}&\color{orangered}{1298715} \end{array} $$The solution is:
$$ \frac{ x^{3}-\frac{ 5 }{ 2 }x^{2}-\frac{ 33 }{ 2 }x-220 }{ x-110 } = \color{blue}{x^{2}+\frac{ 215 }{ 2 }x+\frac{ 23617 }{ 2 }} ~+~ \frac{ \color{red}{ 1298715 } }{ x-110 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -110 = 0 $ ( $ x = \color{blue}{ 110 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{110}&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}110&\color{orangered}{ 1 }&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 110 } \cdot \color{blue}{ 1 } = \color{blue}{ 110 } $.
$$ \begin{array}{c|rrrr}\color{blue}{110}&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & \color{blue}{110} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -\frac{ 5 }{ 2 } } + \color{orangered}{ 110 } = \color{orangered}{ \frac{ 215 }{ 2 } } $
$$ \begin{array}{c|rrrr}110&1&\color{orangered}{ -\frac{ 5 }{ 2 } }&-\frac{ 33 }{ 2 }&-220\\& & \color{orangered}{110} & & \\ \hline &1&\color{orangered}{\frac{ 215 }{ 2 }}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 110 } \cdot \color{blue}{ \frac{ 215 }{ 2 } } = \color{blue}{ 11825 } $.
$$ \begin{array}{c|rrrr}\color{blue}{110}&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & 110& \color{blue}{11825} & \\ \hline &1&\color{blue}{\frac{ 215 }{ 2 }}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -\frac{ 33 }{ 2 } } + \color{orangered}{ 11825 } = \color{orangered}{ \frac{ 23617 }{ 2 } } $
$$ \begin{array}{c|rrrr}110&1&-\frac{ 5 }{ 2 }&\color{orangered}{ -\frac{ 33 }{ 2 } }&-220\\& & 110& \color{orangered}{11825} & \\ \hline &1&\frac{ 215 }{ 2 }&\color{orangered}{\frac{ 23617 }{ 2 }}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 110 } \cdot \color{blue}{ \frac{ 23617 }{ 2 } } = \color{blue}{ 1298935 } $.
$$ \begin{array}{c|rrrr}\color{blue}{110}&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&-220\\& & 110& 11825& \color{blue}{1298935} \\ \hline &1&\frac{ 215 }{ 2 }&\color{blue}{\frac{ 23617 }{ 2 }}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -220 } + \color{orangered}{ 1298935 } = \color{orangered}{ 1298715 } $
$$ \begin{array}{c|rrrr}110&1&-\frac{ 5 }{ 2 }&-\frac{ 33 }{ 2 }&\color{orangered}{ -220 }\\& & 110& 11825& \color{orangered}{1298935} \\ \hline &\color{blue}{1}&\color{blue}{\frac{ 215 }{ 2 }}&\color{blue}{\frac{ 23617 }{ 2 }}&\color{orangered}{1298715} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}+\frac{ 215 }{ 2 }x+\frac{ 23617 }{ 2 } } $ with a remainder of $ \color{red}{ 1298715 } $.