The synthetic division table is:
$$ \begin{array}{c|rrrr}9&1&-18&95&-126\\& & 9& -81& \color{black}{126} \\ \hline &\color{blue}{1}&\color{blue}{-9}&\color{blue}{14}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ x^{3}-18x^{2}+95x-126 }{ x-9 } = \color{blue}{x^{2}-9x+14} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -9 = 0 $ ( $ x = \color{blue}{ 9 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{9}&1&-18&95&-126\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}9&\color{orangered}{ 1 }&-18&95&-126\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 9 } \cdot \color{blue}{ 1 } = \color{blue}{ 9 } $.
$$ \begin{array}{c|rrrr}\color{blue}{9}&1&-18&95&-126\\& & \color{blue}{9} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -18 } + \color{orangered}{ 9 } = \color{orangered}{ -9 } $
$$ \begin{array}{c|rrrr}9&1&\color{orangered}{ -18 }&95&-126\\& & \color{orangered}{9} & & \\ \hline &1&\color{orangered}{-9}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 9 } \cdot \color{blue}{ \left( -9 \right) } = \color{blue}{ -81 } $.
$$ \begin{array}{c|rrrr}\color{blue}{9}&1&-18&95&-126\\& & 9& \color{blue}{-81} & \\ \hline &1&\color{blue}{-9}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 95 } + \color{orangered}{ \left( -81 \right) } = \color{orangered}{ 14 } $
$$ \begin{array}{c|rrrr}9&1&-18&\color{orangered}{ 95 }&-126\\& & 9& \color{orangered}{-81} & \\ \hline &1&-9&\color{orangered}{14}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 9 } \cdot \color{blue}{ 14 } = \color{blue}{ 126 } $.
$$ \begin{array}{c|rrrr}\color{blue}{9}&1&-18&95&-126\\& & 9& -81& \color{blue}{126} \\ \hline &1&-9&\color{blue}{14}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -126 } + \color{orangered}{ 126 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}9&1&-18&95&\color{orangered}{ -126 }\\& & 9& -81& \color{orangered}{126} \\ \hline &\color{blue}{1}&\color{blue}{-9}&\color{blue}{14}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}-9x+14 } $ with a remainder of $ \color{red}{ 0 } $.