The synthetic division table is:
$$ \begin{array}{c|rrrr}1&1&-17&70&-54\\& & 1& -16& \color{black}{54} \\ \hline &\color{blue}{1}&\color{blue}{-16}&\color{blue}{54}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ x^{3}-17x^{2}+70x-54 }{ x-1 } = \color{blue}{x^{2}-16x+54} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -1 = 0 $ ( $ x = \color{blue}{ 1 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{1}&1&-17&70&-54\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}1&\color{orangered}{ 1 }&-17&70&-54\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 1 } = \color{blue}{ 1 } $.
$$ \begin{array}{c|rrrr}\color{blue}{1}&1&-17&70&-54\\& & \color{blue}{1} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -17 } + \color{orangered}{ 1 } = \color{orangered}{ -16 } $
$$ \begin{array}{c|rrrr}1&1&\color{orangered}{ -17 }&70&-54\\& & \color{orangered}{1} & & \\ \hline &1&\color{orangered}{-16}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ \left( -16 \right) } = \color{blue}{ -16 } $.
$$ \begin{array}{c|rrrr}\color{blue}{1}&1&-17&70&-54\\& & 1& \color{blue}{-16} & \\ \hline &1&\color{blue}{-16}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 70 } + \color{orangered}{ \left( -16 \right) } = \color{orangered}{ 54 } $
$$ \begin{array}{c|rrrr}1&1&-17&\color{orangered}{ 70 }&-54\\& & 1& \color{orangered}{-16} & \\ \hline &1&-16&\color{orangered}{54}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 54 } = \color{blue}{ 54 } $.
$$ \begin{array}{c|rrrr}\color{blue}{1}&1&-17&70&-54\\& & 1& -16& \color{blue}{54} \\ \hline &1&-16&\color{blue}{54}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -54 } + \color{orangered}{ 54 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}1&1&-17&70&\color{orangered}{ -54 }\\& & 1& -16& \color{orangered}{54} \\ \hline &\color{blue}{1}&\color{blue}{-16}&\color{blue}{54}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}-16x+54 } $ with a remainder of $ \color{red}{ 0 } $.