The synthetic division table is:
$$ \begin{array}{c|rrrr}7&1&-16&83&-140\\& & 7& -63& \color{black}{140} \\ \hline &\color{blue}{1}&\color{blue}{-9}&\color{blue}{20}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ x^{3}-16x^{2}+83x-140 }{ x-7 } = \color{blue}{x^{2}-9x+20} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -7 = 0 $ ( $ x = \color{blue}{ 7 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{7}&1&-16&83&-140\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}7&\color{orangered}{ 1 }&-16&83&-140\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 7 } \cdot \color{blue}{ 1 } = \color{blue}{ 7 } $.
$$ \begin{array}{c|rrrr}\color{blue}{7}&1&-16&83&-140\\& & \color{blue}{7} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -16 } + \color{orangered}{ 7 } = \color{orangered}{ -9 } $
$$ \begin{array}{c|rrrr}7&1&\color{orangered}{ -16 }&83&-140\\& & \color{orangered}{7} & & \\ \hline &1&\color{orangered}{-9}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 7 } \cdot \color{blue}{ \left( -9 \right) } = \color{blue}{ -63 } $.
$$ \begin{array}{c|rrrr}\color{blue}{7}&1&-16&83&-140\\& & 7& \color{blue}{-63} & \\ \hline &1&\color{blue}{-9}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 83 } + \color{orangered}{ \left( -63 \right) } = \color{orangered}{ 20 } $
$$ \begin{array}{c|rrrr}7&1&-16&\color{orangered}{ 83 }&-140\\& & 7& \color{orangered}{-63} & \\ \hline &1&-9&\color{orangered}{20}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 7 } \cdot \color{blue}{ 20 } = \color{blue}{ 140 } $.
$$ \begin{array}{c|rrrr}\color{blue}{7}&1&-16&83&-140\\& & 7& -63& \color{blue}{140} \\ \hline &1&-9&\color{blue}{20}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -140 } + \color{orangered}{ 140 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}7&1&-16&83&\color{orangered}{ -140 }\\& & 7& -63& \color{orangered}{140} \\ \hline &\color{blue}{1}&\color{blue}{-9}&\color{blue}{20}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}-9x+20 } $ with a remainder of $ \color{red}{ 0 } $.