The synthetic division table is:
$$ \begin{array}{c|rrr}3&1&0&9\\& & 3& \color{black}{9} \\ \hline &\color{blue}{1}&\color{blue}{3}&\color{orangered}{18} \end{array} $$The solution is:
$$ \frac{ x^{2}+9 }{ x-3 } = \color{blue}{x+3} ~+~ \frac{ \color{red}{ 18 } }{ x-3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -3 = 0 $ ( $ x = \color{blue}{ 3 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{3}&1&0&9\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}3&\color{orangered}{ 1 }&0&9\\& & & \\ \hline &\color{orangered}{1}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 1 } = \color{blue}{ 3 } $.
$$ \begin{array}{c|rrr}\color{blue}{3}&1&0&9\\& & \color{blue}{3} & \\ \hline &\color{blue}{1}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 3 } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrr}3&1&\color{orangered}{ 0 }&9\\& & \color{orangered}{3} & \\ \hline &1&\color{orangered}{3}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 3 } = \color{blue}{ 9 } $.
$$ \begin{array}{c|rrr}\color{blue}{3}&1&0&9\\& & 3& \color{blue}{9} \\ \hline &1&\color{blue}{3}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 9 } + \color{orangered}{ 9 } = \color{orangered}{ 18 } $
$$ \begin{array}{c|rrr}3&1&0&\color{orangered}{ 9 }\\& & 3& \color{orangered}{9} \\ \hline &\color{blue}{1}&\color{blue}{3}&\color{orangered}{18} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x+3 } $ with a remainder of $ \color{red}{ 18 } $.