The synthetic division table is:
$$ \begin{array}{c|rrr}-2&1&5&-1\\& & -2& \color{black}{-6} \\ \hline &\color{blue}{1}&\color{blue}{3}&\color{orangered}{-7} \end{array} $$The solution is:
$$ \frac{ x^{2}+5x-1 }{ x+2 } = \color{blue}{x+3} \color{red}{~-~} \frac{ \color{red}{ 7 } }{ x+2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 2 = 0 $ ( $ x = \color{blue}{ -2 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{-2}&1&5&-1\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}-2&\color{orangered}{ 1 }&5&-1\\& & & \\ \hline &\color{orangered}{1}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 1 } = \color{blue}{ -2 } $.
$$ \begin{array}{c|rrr}\color{blue}{-2}&1&5&-1\\& & \color{blue}{-2} & \\ \hline &\color{blue}{1}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 5 } + \color{orangered}{ \left( -2 \right) } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrr}-2&1&\color{orangered}{ 5 }&-1\\& & \color{orangered}{-2} & \\ \hline &1&\color{orangered}{3}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 3 } = \color{blue}{ -6 } $.
$$ \begin{array}{c|rrr}\color{blue}{-2}&1&5&-1\\& & -2& \color{blue}{-6} \\ \hline &1&\color{blue}{3}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -1 } + \color{orangered}{ \left( -6 \right) } = \color{orangered}{ -7 } $
$$ \begin{array}{c|rrr}-2&1&5&\color{orangered}{ -1 }\\& & -2& \color{orangered}{-6} \\ \hline &\color{blue}{1}&\color{blue}{3}&\color{orangered}{-7} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x+3 } $ with a remainder of $ \color{red}{ -7 } $.