The synthetic division table is:
$$ \begin{array}{c|rrr}-1&1&2&2\\& & -1& \color{black}{-1} \\ \hline &\color{blue}{1}&\color{blue}{1}&\color{orangered}{1} \end{array} $$The solution is:
$$ \frac{ x^{2}+2x+2 }{ x+1 } = \color{blue}{x+1} ~+~ \frac{ \color{red}{ 1 } }{ x+1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 1 = 0 $ ( $ x = \color{blue}{ -1 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{-1}&1&2&2\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}-1&\color{orangered}{ 1 }&2&2\\& & & \\ \hline &\color{orangered}{1}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 1 } = \color{blue}{ -1 } $.
$$ \begin{array}{c|rrr}\color{blue}{-1}&1&2&2\\& & \color{blue}{-1} & \\ \hline &\color{blue}{1}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 2 } + \color{orangered}{ \left( -1 \right) } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrr}-1&1&\color{orangered}{ 2 }&2\\& & \color{orangered}{-1} & \\ \hline &1&\color{orangered}{1}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 1 } = \color{blue}{ -1 } $.
$$ \begin{array}{c|rrr}\color{blue}{-1}&1&2&2\\& & -1& \color{blue}{-1} \\ \hline &1&\color{blue}{1}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 2 } + \color{orangered}{ \left( -1 \right) } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrr}-1&1&2&\color{orangered}{ 2 }\\& & -1& \color{orangered}{-1} \\ \hline &\color{blue}{1}&\color{blue}{1}&\color{orangered}{1} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x+1 } $ with a remainder of $ \color{red}{ 1 } $.