The synthetic division table is:
$$ \begin{array}{c|rrr}7&1&2&-63\\& & 7& \color{black}{63} \\ \hline &\color{blue}{1}&\color{blue}{9}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ x^{2}+2x-63 }{ x-7 } = \color{blue}{x+9} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -7 = 0 $ ( $ x = \color{blue}{ 7 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{7}&1&2&-63\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}7&\color{orangered}{ 1 }&2&-63\\& & & \\ \hline &\color{orangered}{1}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 7 } \cdot \color{blue}{ 1 } = \color{blue}{ 7 } $.
$$ \begin{array}{c|rrr}\color{blue}{7}&1&2&-63\\& & \color{blue}{7} & \\ \hline &\color{blue}{1}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 2 } + \color{orangered}{ 7 } = \color{orangered}{ 9 } $
$$ \begin{array}{c|rrr}7&1&\color{orangered}{ 2 }&-63\\& & \color{orangered}{7} & \\ \hline &1&\color{orangered}{9}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 7 } \cdot \color{blue}{ 9 } = \color{blue}{ 63 } $.
$$ \begin{array}{c|rrr}\color{blue}{7}&1&2&-63\\& & 7& \color{blue}{63} \\ \hline &1&\color{blue}{9}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -63 } + \color{orangered}{ 63 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrr}7&1&2&\color{orangered}{ -63 }\\& & 7& \color{orangered}{63} \\ \hline &\color{blue}{1}&\color{blue}{9}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x+9 } $ with a remainder of $ \color{red}{ 0 } $.