The synthetic division table is:
$$ \begin{array}{c|rrr}-7&1&12&20\\& & -7& \color{black}{-35} \\ \hline &\color{blue}{1}&\color{blue}{5}&\color{orangered}{-15} \end{array} $$The solution is:
$$ \frac{ x^{2}+12x+20 }{ x+7 } = \color{blue}{x+5} \color{red}{~-~} \frac{ \color{red}{ 15 } }{ x+7 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 7 = 0 $ ( $ x = \color{blue}{ -7 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{-7}&1&12&20\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}-7&\color{orangered}{ 1 }&12&20\\& & & \\ \hline &\color{orangered}{1}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -7 } \cdot \color{blue}{ 1 } = \color{blue}{ -7 } $.
$$ \begin{array}{c|rrr}\color{blue}{-7}&1&12&20\\& & \color{blue}{-7} & \\ \hline &\color{blue}{1}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 12 } + \color{orangered}{ \left( -7 \right) } = \color{orangered}{ 5 } $
$$ \begin{array}{c|rrr}-7&1&\color{orangered}{ 12 }&20\\& & \color{orangered}{-7} & \\ \hline &1&\color{orangered}{5}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -7 } \cdot \color{blue}{ 5 } = \color{blue}{ -35 } $.
$$ \begin{array}{c|rrr}\color{blue}{-7}&1&12&20\\& & -7& \color{blue}{-35} \\ \hline &1&\color{blue}{5}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 20 } + \color{orangered}{ \left( -35 \right) } = \color{orangered}{ -15 } $
$$ \begin{array}{c|rrr}-7&1&12&\color{orangered}{ 20 }\\& & -7& \color{orangered}{-35} \\ \hline &\color{blue}{1}&\color{blue}{5}&\color{orangered}{-15} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x+5 } $ with a remainder of $ \color{red}{ -15 } $.