The synthetic division table is:
$$ \begin{array}{c|rrr}-1&1&-6&8\\& & -1& \color{black}{7} \\ \hline &\color{blue}{1}&\color{blue}{-7}&\color{orangered}{15} \end{array} $$The solution is:
$$ \frac{ x^{2}-6x+8 }{ x+1 } = \color{blue}{x-7} ~+~ \frac{ \color{red}{ 15 } }{ x+1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 1 = 0 $ ( $ x = \color{blue}{ -1 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{-1}&1&-6&8\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}-1&\color{orangered}{ 1 }&-6&8\\& & & \\ \hline &\color{orangered}{1}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 1 } = \color{blue}{ -1 } $.
$$ \begin{array}{c|rrr}\color{blue}{-1}&1&-6&8\\& & \color{blue}{-1} & \\ \hline &\color{blue}{1}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -6 } + \color{orangered}{ \left( -1 \right) } = \color{orangered}{ -7 } $
$$ \begin{array}{c|rrr}-1&1&\color{orangered}{ -6 }&8\\& & \color{orangered}{-1} & \\ \hline &1&\color{orangered}{-7}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ \left( -7 \right) } = \color{blue}{ 7 } $.
$$ \begin{array}{c|rrr}\color{blue}{-1}&1&-6&8\\& & -1& \color{blue}{7} \\ \hline &1&\color{blue}{-7}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 8 } + \color{orangered}{ 7 } = \color{orangered}{ 15 } $
$$ \begin{array}{c|rrr}-1&1&-6&\color{orangered}{ 8 }\\& & -1& \color{orangered}{7} \\ \hline &\color{blue}{1}&\color{blue}{-7}&\color{orangered}{15} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x-7 } $ with a remainder of $ \color{red}{ 15 } $.