The synthetic division table is:
$$ \begin{array}{c|rrr}8&1&-5&-26\\& & 8& \color{black}{24} \\ \hline &\color{blue}{1}&\color{blue}{3}&\color{orangered}{-2} \end{array} $$The solution is:
$$ \frac{ x^{2}-5x-26 }{ x-8 } = \color{blue}{x+3} \color{red}{~-~} \frac{ \color{red}{ 2 } }{ x-8 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -8 = 0 $ ( $ x = \color{blue}{ 8 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{8}&1&-5&-26\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}8&\color{orangered}{ 1 }&-5&-26\\& & & \\ \hline &\color{orangered}{1}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 8 } \cdot \color{blue}{ 1 } = \color{blue}{ 8 } $.
$$ \begin{array}{c|rrr}\color{blue}{8}&1&-5&-26\\& & \color{blue}{8} & \\ \hline &\color{blue}{1}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -5 } + \color{orangered}{ 8 } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrr}8&1&\color{orangered}{ -5 }&-26\\& & \color{orangered}{8} & \\ \hline &1&\color{orangered}{3}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 8 } \cdot \color{blue}{ 3 } = \color{blue}{ 24 } $.
$$ \begin{array}{c|rrr}\color{blue}{8}&1&-5&-26\\& & 8& \color{blue}{24} \\ \hline &1&\color{blue}{3}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -26 } + \color{orangered}{ 24 } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rrr}8&1&-5&\color{orangered}{ -26 }\\& & 8& \color{orangered}{24} \\ \hline &\color{blue}{1}&\color{blue}{3}&\color{orangered}{-2} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x+3 } $ with a remainder of $ \color{red}{ -2 } $.