The synthetic division table is:
$$ \begin{array}{c|rrr}-8&1&-14&-8\\& & -8& \color{black}{176} \\ \hline &\color{blue}{1}&\color{blue}{-22}&\color{orangered}{168} \end{array} $$The solution is:
$$ \frac{ x^{2}-14x-8 }{ x+8 } = \color{blue}{x-22} ~+~ \frac{ \color{red}{ 168 } }{ x+8 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 8 = 0 $ ( $ x = \color{blue}{ -8 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{-8}&1&-14&-8\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}-8&\color{orangered}{ 1 }&-14&-8\\& & & \\ \hline &\color{orangered}{1}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -8 } \cdot \color{blue}{ 1 } = \color{blue}{ -8 } $.
$$ \begin{array}{c|rrr}\color{blue}{-8}&1&-14&-8\\& & \color{blue}{-8} & \\ \hline &\color{blue}{1}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -14 } + \color{orangered}{ \left( -8 \right) } = \color{orangered}{ -22 } $
$$ \begin{array}{c|rrr}-8&1&\color{orangered}{ -14 }&-8\\& & \color{orangered}{-8} & \\ \hline &1&\color{orangered}{-22}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -8 } \cdot \color{blue}{ \left( -22 \right) } = \color{blue}{ 176 } $.
$$ \begin{array}{c|rrr}\color{blue}{-8}&1&-14&-8\\& & -8& \color{blue}{176} \\ \hline &1&\color{blue}{-22}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -8 } + \color{orangered}{ 176 } = \color{orangered}{ 168 } $
$$ \begin{array}{c|rrr}-8&1&-14&\color{orangered}{ -8 }\\& & -8& \color{orangered}{176} \\ \hline &\color{blue}{1}&\color{blue}{-22}&\color{orangered}{168} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x-22 } $ with a remainder of $ \color{red}{ 168 } $.