The synthetic division table is:
$$ \begin{array}{c|rrr}-4&1&-14&-8\\& & -4& \color{black}{72} \\ \hline &\color{blue}{1}&\color{blue}{-18}&\color{orangered}{64} \end{array} $$The solution is:
$$ \frac{ x^{2}-14x-8 }{ x+4 } = \color{blue}{x-18} ~+~ \frac{ \color{red}{ 64 } }{ x+4 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 4 = 0 $ ( $ x = \color{blue}{ -4 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{-4}&1&-14&-8\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}-4&\color{orangered}{ 1 }&-14&-8\\& & & \\ \hline &\color{orangered}{1}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -4 } \cdot \color{blue}{ 1 } = \color{blue}{ -4 } $.
$$ \begin{array}{c|rrr}\color{blue}{-4}&1&-14&-8\\& & \color{blue}{-4} & \\ \hline &\color{blue}{1}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -14 } + \color{orangered}{ \left( -4 \right) } = \color{orangered}{ -18 } $
$$ \begin{array}{c|rrr}-4&1&\color{orangered}{ -14 }&-8\\& & \color{orangered}{-4} & \\ \hline &1&\color{orangered}{-18}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -4 } \cdot \color{blue}{ \left( -18 \right) } = \color{blue}{ 72 } $.
$$ \begin{array}{c|rrr}\color{blue}{-4}&1&-14&-8\\& & -4& \color{blue}{72} \\ \hline &1&\color{blue}{-18}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -8 } + \color{orangered}{ 72 } = \color{orangered}{ 64 } $
$$ \begin{array}{c|rrr}-4&1&-14&\color{orangered}{ -8 }\\& & -4& \color{orangered}{72} \\ \hline &\color{blue}{1}&\color{blue}{-18}&\color{orangered}{64} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x-18 } $ with a remainder of $ \color{red}{ 64 } $.