The synthetic division table is:
$$ \begin{array}{c|rrr}2&1&-14&-8\\& & 2& \color{black}{-24} \\ \hline &\color{blue}{1}&\color{blue}{-12}&\color{orangered}{-32} \end{array} $$The solution is:
$$ \frac{ x^{2}-14x-8 }{ x-2 } = \color{blue}{x-12} \color{red}{~-~} \frac{ \color{red}{ 32 } }{ x-2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{2}&1&-14&-8\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}2&\color{orangered}{ 1 }&-14&-8\\& & & \\ \hline &\color{orangered}{1}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 1 } = \color{blue}{ 2 } $.
$$ \begin{array}{c|rrr}\color{blue}{2}&1&-14&-8\\& & \color{blue}{2} & \\ \hline &\color{blue}{1}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -14 } + \color{orangered}{ 2 } = \color{orangered}{ -12 } $
$$ \begin{array}{c|rrr}2&1&\color{orangered}{ -14 }&-8\\& & \color{orangered}{2} & \\ \hline &1&\color{orangered}{-12}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -12 \right) } = \color{blue}{ -24 } $.
$$ \begin{array}{c|rrr}\color{blue}{2}&1&-14&-8\\& & 2& \color{blue}{-24} \\ \hline &1&\color{blue}{-12}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -8 } + \color{orangered}{ \left( -24 \right) } = \color{orangered}{ -32 } $
$$ \begin{array}{c|rrr}2&1&-14&\color{orangered}{ -8 }\\& & 2& \color{orangered}{-24} \\ \hline &\color{blue}{1}&\color{blue}{-12}&\color{orangered}{-32} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x-12 } $ with a remainder of $ \color{red}{ -32 } $.