The synthetic division table is:
$$ \begin{array}{c|rr}2&9&10\\& & \color{black}{18} \\ \hline &\color{blue}{9}&\color{orangered}{28} \end{array} $$The solution is:
$$ \frac{ 9x+10 }{ x-2 } = \color{blue}{9} ~+~ \frac{ \color{red}{ 28 } }{ x-2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rr}\color{blue}{2}&9&10\\& & \\ \hline && \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rr}2&\color{orangered}{ 9 }&10\\& & \\ \hline &\color{orangered}{9}& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 9 } = \color{blue}{ 18 } $.
$$ \begin{array}{c|rr}\color{blue}{2}&9&10\\& & \color{blue}{18} \\ \hline &\color{blue}{9}& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 10 } + \color{orangered}{ 18 } = \color{orangered}{ 28 } $
$$ \begin{array}{c|rr}2&9&\color{orangered}{ 10 }\\& & \color{orangered}{18} \\ \hline &\color{blue}{9}&\color{orangered}{28} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 9 } $ with a remainder of $ \color{red}{ 28 } $.