The synthetic division table is:
$$ \begin{array}{c|rr}3&-7&7\\& & \color{black}{-21} \\ \hline &\color{blue}{-7}&\color{orangered}{-14} \end{array} $$The solution is:
$$ \frac{ -7x+7 }{ x-3 } = \color{blue}{-7} \color{red}{~-~} \frac{ \color{red}{ 14 } }{ x-3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -3 = 0 $ ( $ x = \color{blue}{ 3 } $ ) at the left.
$$ \begin{array}{c|rr}\color{blue}{3}&-7&7\\& & \\ \hline && \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rr}3&\color{orangered}{ -7 }&7\\& & \\ \hline &\color{orangered}{-7}& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ \left( -7 \right) } = \color{blue}{ -21 } $.
$$ \begin{array}{c|rr}\color{blue}{3}&-7&7\\& & \color{blue}{-21} \\ \hline &\color{blue}{-7}& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 7 } + \color{orangered}{ \left( -21 \right) } = \color{orangered}{ -14 } $
$$ \begin{array}{c|rr}3&-7&\color{orangered}{ 7 }\\& & \color{orangered}{-21} \\ \hline &\color{blue}{-7}&\color{orangered}{-14} \end{array} $$Bottom line represents the quotient $ \color{blue}{ -7 } $ with a remainder of $ \color{red}{ -14 } $.