The synthetic division table is:
$$ \begin{array}{c|rrrrrr}2&1&-2&0&0&-10&25\\& & 2& 0& 0& 0& \color{black}{-20} \\ \hline &\color{blue}{1}&\color{blue}{0}&\color{blue}{0}&\color{blue}{0}&\color{blue}{-10}&\color{orangered}{5} \end{array} $$The solution is:
$$ \frac{ x^{5}-2x^{4}-10x+25 }{ x-2 } = \color{blue}{x^{4}-10} ~+~ \frac{ \color{red}{ 5 } }{ x-2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrrrrr}\color{blue}{2}&1&-2&0&0&-10&25\\& & & & & & \\ \hline &&&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrrr}2&\color{orangered}{ 1 }&-2&0&0&-10&25\\& & & & & & \\ \hline &\color{orangered}{1}&&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 1 } = \color{blue}{ 2 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{2}&1&-2&0&0&-10&25\\& & \color{blue}{2} & & & & \\ \hline &\color{blue}{1}&&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ 2 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrrr}2&1&\color{orangered}{ -2 }&0&0&-10&25\\& & \color{orangered}{2} & & & & \\ \hline &1&\color{orangered}{0}&&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{2}&1&-2&0&0&-10&25\\& & 2& \color{blue}{0} & & & \\ \hline &1&\color{blue}{0}&&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 0 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrrr}2&1&-2&\color{orangered}{ 0 }&0&-10&25\\& & 2& \color{orangered}{0} & & & \\ \hline &1&0&\color{orangered}{0}&&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{2}&1&-2&0&0&-10&25\\& & 2& 0& \color{blue}{0} & & \\ \hline &1&0&\color{blue}{0}&&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 0 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrrr}2&1&-2&0&\color{orangered}{ 0 }&-10&25\\& & 2& 0& \color{orangered}{0} & & \\ \hline &1&0&0&\color{orangered}{0}&& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{2}&1&-2&0&0&-10&25\\& & 2& 0& 0& \color{blue}{0} & \\ \hline &1&0&0&\color{blue}{0}&& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -10 } + \color{orangered}{ 0 } = \color{orangered}{ -10 } $
$$ \begin{array}{c|rrrrrr}2&1&-2&0&0&\color{orangered}{ -10 }&25\\& & 2& 0& 0& \color{orangered}{0} & \\ \hline &1&0&0&0&\color{orangered}{-10}& \end{array} $$Step 10 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -10 \right) } = \color{blue}{ -20 } $.
$$ \begin{array}{c|rrrrrr}\color{blue}{2}&1&-2&0&0&-10&25\\& & 2& 0& 0& 0& \color{blue}{-20} \\ \hline &1&0&0&0&\color{blue}{-10}& \end{array} $$Step 11 : Add down last column: $ \color{orangered}{ 25 } + \color{orangered}{ \left( -20 \right) } = \color{orangered}{ 5 } $
$$ \begin{array}{c|rrrrrr}2&1&-2&0&0&-10&\color{orangered}{ 25 }\\& & 2& 0& 0& 0& \color{orangered}{-20} \\ \hline &\color{blue}{1}&\color{blue}{0}&\color{blue}{0}&\color{blue}{0}&\color{blue}{-10}&\color{orangered}{5} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{4}-10 } $ with a remainder of $ \color{red}{ 5 } $.