The synthetic division table is:
$$ \begin{array}{c|rrr}-5&1&11&25\\& & -5& \color{black}{-30} \\ \hline &\color{blue}{1}&\color{blue}{6}&\color{orangered}{-5} \end{array} $$The solution is:
$$ \frac{ x^{2}+11x+25 }{ x+5 } = \color{blue}{x+6} \color{red}{~-~} \frac{ \color{red}{ 5 } }{ x+5 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 5 = 0 $ ( $ x = \color{blue}{ -5 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{-5}&1&11&25\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}-5&\color{orangered}{ 1 }&11&25\\& & & \\ \hline &\color{orangered}{1}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -5 } \cdot \color{blue}{ 1 } = \color{blue}{ -5 } $.
$$ \begin{array}{c|rrr}\color{blue}{-5}&1&11&25\\& & \color{blue}{-5} & \\ \hline &\color{blue}{1}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 11 } + \color{orangered}{ \left( -5 \right) } = \color{orangered}{ 6 } $
$$ \begin{array}{c|rrr}-5&1&\color{orangered}{ 11 }&25\\& & \color{orangered}{-5} & \\ \hline &1&\color{orangered}{6}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -5 } \cdot \color{blue}{ 6 } = \color{blue}{ -30 } $.
$$ \begin{array}{c|rrr}\color{blue}{-5}&1&11&25\\& & -5& \color{blue}{-30} \\ \hline &1&\color{blue}{6}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 25 } + \color{orangered}{ \left( -30 \right) } = \color{orangered}{ -5 } $
$$ \begin{array}{c|rrr}-5&1&11&\color{orangered}{ 25 }\\& & -5& \color{orangered}{-30} \\ \hline &\color{blue}{1}&\color{blue}{6}&\color{orangered}{-5} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x+6 } $ with a remainder of $ \color{red}{ -5 } $.