The synthetic division table is:
$$ \begin{array}{c|rrr}2&9&-15&-6\\& & 18& \color{black}{6} \\ \hline &\color{blue}{9}&\color{blue}{3}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ 9x^{2}-15x-6 }{ x-2 } = \color{blue}{9x+3} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{2}&9&-15&-6\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}2&\color{orangered}{ 9 }&-15&-6\\& & & \\ \hline &\color{orangered}{9}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 9 } = \color{blue}{ 18 } $.
$$ \begin{array}{c|rrr}\color{blue}{2}&9&-15&-6\\& & \color{blue}{18} & \\ \hline &\color{blue}{9}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -15 } + \color{orangered}{ 18 } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrr}2&9&\color{orangered}{ -15 }&-6\\& & \color{orangered}{18} & \\ \hline &9&\color{orangered}{3}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 3 } = \color{blue}{ 6 } $.
$$ \begin{array}{c|rrr}\color{blue}{2}&9&-15&-6\\& & 18& \color{blue}{6} \\ \hline &9&\color{blue}{3}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -6 } + \color{orangered}{ 6 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrr}2&9&-15&\color{orangered}{ -6 }\\& & 18& \color{orangered}{6} \\ \hline &\color{blue}{9}&\color{blue}{3}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 9x+3 } $ with a remainder of $ \color{red}{ 0 } $.