The synthetic division table is:
$$ \begin{array}{c|rr}1&8&5\\& & \color{black}{8} \\ \hline &\color{blue}{8}&\color{orangered}{13} \end{array} $$The solution is:
$$ \frac{ 8x+5 }{ x-1 } = \color{blue}{8} ~+~ \frac{ \color{red}{ 13 } }{ x-1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -1 = 0 $ ( $ x = \color{blue}{ 1 } $ ) at the left.
$$ \begin{array}{c|rr}\color{blue}{1}&8&5\\& & \\ \hline && \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rr}1&\color{orangered}{ 8 }&5\\& & \\ \hline &\color{orangered}{8}& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 8 } = \color{blue}{ 8 } $.
$$ \begin{array}{c|rr}\color{blue}{1}&8&5\\& & \color{blue}{8} \\ \hline &\color{blue}{8}& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 5 } + \color{orangered}{ 8 } = \color{orangered}{ 13 } $
$$ \begin{array}{c|rr}1&8&\color{orangered}{ 5 }\\& & \color{orangered}{8} \\ \hline &\color{blue}{8}&\color{orangered}{13} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 8 } $ with a remainder of $ \color{red}{ 13 } $.