The synthetic division table is:
$$ \begin{array}{c|rr}13&7&0\\& & \color{black}{91} \\ \hline &\color{blue}{7}&\color{orangered}{91} \end{array} $$The solution is:
$$ \frac{ 7x }{ x-13 } = \color{blue}{7} ~+~ \frac{ \color{red}{ 91 } }{ x-13 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -13 = 0 $ ( $ x = \color{blue}{ 13 } $ ) at the left.
$$ \begin{array}{c|rr}\color{blue}{13}&7&0\\& & \\ \hline && \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rr}13&\color{orangered}{ 7 }&0\\& & \\ \hline &\color{orangered}{7}& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 13 } \cdot \color{blue}{ 7 } = \color{blue}{ 91 } $.
$$ \begin{array}{c|rr}\color{blue}{13}&7&0\\& & \color{blue}{91} \\ \hline &\color{blue}{7}& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 91 } = \color{orangered}{ 91 } $
$$ \begin{array}{c|rr}13&7&\color{orangered}{ 0 }\\& & \color{orangered}{91} \\ \hline &\color{blue}{7}&\color{orangered}{91} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 7 } $ with a remainder of $ \color{red}{ 91 } $.