The synthetic division table is:
$$ \begin{array}{c|rrrrr}4&6&-17&0&-34&48\\& & 24& 28& 112& \color{black}{312} \\ \hline &\color{blue}{6}&\color{blue}{7}&\color{blue}{28}&\color{blue}{78}&\color{orangered}{360} \end{array} $$The solution is:
$$ \frac{ 6x^{4}-17x^{3}-34x+48 }{ x-4 } = \color{blue}{6x^{3}+7x^{2}+28x+78} ~+~ \frac{ \color{red}{ 360 } }{ x-4 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -4 = 0 $ ( $ x = \color{blue}{ 4 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{4}&6&-17&0&-34&48\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}4&\color{orangered}{ 6 }&-17&0&-34&48\\& & & & & \\ \hline &\color{orangered}{6}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 4 } \cdot \color{blue}{ 6 } = \color{blue}{ 24 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{4}&6&-17&0&-34&48\\& & \color{blue}{24} & & & \\ \hline &\color{blue}{6}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -17 } + \color{orangered}{ 24 } = \color{orangered}{ 7 } $
$$ \begin{array}{c|rrrrr}4&6&\color{orangered}{ -17 }&0&-34&48\\& & \color{orangered}{24} & & & \\ \hline &6&\color{orangered}{7}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 4 } \cdot \color{blue}{ 7 } = \color{blue}{ 28 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{4}&6&-17&0&-34&48\\& & 24& \color{blue}{28} & & \\ \hline &6&\color{blue}{7}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 28 } = \color{orangered}{ 28 } $
$$ \begin{array}{c|rrrrr}4&6&-17&\color{orangered}{ 0 }&-34&48\\& & 24& \color{orangered}{28} & & \\ \hline &6&7&\color{orangered}{28}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 4 } \cdot \color{blue}{ 28 } = \color{blue}{ 112 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{4}&6&-17&0&-34&48\\& & 24& 28& \color{blue}{112} & \\ \hline &6&7&\color{blue}{28}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -34 } + \color{orangered}{ 112 } = \color{orangered}{ 78 } $
$$ \begin{array}{c|rrrrr}4&6&-17&0&\color{orangered}{ -34 }&48\\& & 24& 28& \color{orangered}{112} & \\ \hline &6&7&28&\color{orangered}{78}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 4 } \cdot \color{blue}{ 78 } = \color{blue}{ 312 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{4}&6&-17&0&-34&48\\& & 24& 28& 112& \color{blue}{312} \\ \hline &6&7&28&\color{blue}{78}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 48 } + \color{orangered}{ 312 } = \color{orangered}{ 360 } $
$$ \begin{array}{c|rrrrr}4&6&-17&0&-34&\color{orangered}{ 48 }\\& & 24& 28& 112& \color{orangered}{312} \\ \hline &\color{blue}{6}&\color{blue}{7}&\color{blue}{28}&\color{blue}{78}&\color{orangered}{360} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 6x^{3}+7x^{2}+28x+78 } $ with a remainder of $ \color{red}{ 360 } $.