The synthetic division table is:
$$ \begin{array}{c|rrrr}2&6&-6&5&5\\& & 12& 12& \color{black}{34} \\ \hline &\color{blue}{6}&\color{blue}{6}&\color{blue}{17}&\color{orangered}{39} \end{array} $$The solution is:
$$ \frac{ 6x^{3}-6x^{2}+5x+5 }{ x-2 } = \color{blue}{6x^{2}+6x+17} ~+~ \frac{ \color{red}{ 39 } }{ x-2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{2}&6&-6&5&5\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}2&\color{orangered}{ 6 }&-6&5&5\\& & & & \\ \hline &\color{orangered}{6}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 6 } = \color{blue}{ 12 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&6&-6&5&5\\& & \color{blue}{12} & & \\ \hline &\color{blue}{6}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -6 } + \color{orangered}{ 12 } = \color{orangered}{ 6 } $
$$ \begin{array}{c|rrrr}2&6&\color{orangered}{ -6 }&5&5\\& & \color{orangered}{12} & & \\ \hline &6&\color{orangered}{6}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 6 } = \color{blue}{ 12 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&6&-6&5&5\\& & 12& \color{blue}{12} & \\ \hline &6&\color{blue}{6}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 5 } + \color{orangered}{ 12 } = \color{orangered}{ 17 } $
$$ \begin{array}{c|rrrr}2&6&-6&\color{orangered}{ 5 }&5\\& & 12& \color{orangered}{12} & \\ \hline &6&6&\color{orangered}{17}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 17 } = \color{blue}{ 34 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&6&-6&5&5\\& & 12& 12& \color{blue}{34} \\ \hline &6&6&\color{blue}{17}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 5 } + \color{orangered}{ 34 } = \color{orangered}{ 39 } $
$$ \begin{array}{c|rrrr}2&6&-6&5&\color{orangered}{ 5 }\\& & 12& 12& \color{orangered}{34} \\ \hline &\color{blue}{6}&\color{blue}{6}&\color{blue}{17}&\color{orangered}{39} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 6x^{2}+6x+17 } $ with a remainder of $ \color{red}{ 39 } $.