The synthetic division table is:
$$ \begin{array}{c|rrrr}1&5&-5&0&0\\& & 5& 0& \color{black}{0} \\ \hline &\color{blue}{5}&\color{blue}{0}&\color{blue}{0}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ 5x^{3}-5x^{2} }{ x-1 } = \color{blue}{5x^{2}} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -1 = 0 $ ( $ x = \color{blue}{ 1 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{1}&5&-5&0&0\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}1&\color{orangered}{ 5 }&-5&0&0\\& & & & \\ \hline &\color{orangered}{5}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 5 } = \color{blue}{ 5 } $.
$$ \begin{array}{c|rrrr}\color{blue}{1}&5&-5&0&0\\& & \color{blue}{5} & & \\ \hline &\color{blue}{5}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -5 } + \color{orangered}{ 5 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}1&5&\color{orangered}{ -5 }&0&0\\& & \color{orangered}{5} & & \\ \hline &5&\color{orangered}{0}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrr}\color{blue}{1}&5&-5&0&0\\& & 5& \color{blue}{0} & \\ \hline &5&\color{blue}{0}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 0 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}1&5&-5&\color{orangered}{ 0 }&0\\& & 5& \color{orangered}{0} & \\ \hline &5&0&\color{orangered}{0}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrr}\color{blue}{1}&5&-5&0&0\\& & 5& 0& \color{blue}{0} \\ \hline &5&0&\color{blue}{0}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 0 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}1&5&-5&0&\color{orangered}{ 0 }\\& & 5& 0& \color{orangered}{0} \\ \hline &\color{blue}{5}&\color{blue}{0}&\color{blue}{0}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 5x^{2} } $ with a remainder of $ \color{red}{ 0 } $.