The synthetic division table is:
$$ \begin{array}{c|rrr}2&5&-3&6\\& & 10& \color{black}{14} \\ \hline &\color{blue}{5}&\color{blue}{7}&\color{orangered}{20} \end{array} $$The solution is:
$$ \frac{ 5x^{2}-3x+6 }{ x-2 } = \color{blue}{5x+7} ~+~ \frac{ \color{red}{ 20 } }{ x-2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{2}&5&-3&6\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}2&\color{orangered}{ 5 }&-3&6\\& & & \\ \hline &\color{orangered}{5}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 5 } = \color{blue}{ 10 } $.
$$ \begin{array}{c|rrr}\color{blue}{2}&5&-3&6\\& & \color{blue}{10} & \\ \hline &\color{blue}{5}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ 10 } = \color{orangered}{ 7 } $
$$ \begin{array}{c|rrr}2&5&\color{orangered}{ -3 }&6\\& & \color{orangered}{10} & \\ \hline &5&\color{orangered}{7}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 7 } = \color{blue}{ 14 } $.
$$ \begin{array}{c|rrr}\color{blue}{2}&5&-3&6\\& & 10& \color{blue}{14} \\ \hline &5&\color{blue}{7}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 6 } + \color{orangered}{ 14 } = \color{orangered}{ 20 } $
$$ \begin{array}{c|rrr}2&5&-3&\color{orangered}{ 6 }\\& & 10& \color{orangered}{14} \\ \hline &\color{blue}{5}&\color{blue}{7}&\color{orangered}{20} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 5x+7 } $ with a remainder of $ \color{red}{ 20 } $.