The synthetic division table is:
$$ \begin{array}{c|rrr}3&-2&9&-3\\& & -6& \color{black}{9} \\ \hline &\color{blue}{-2}&\color{blue}{3}&\color{orangered}{6} \end{array} $$The solution is:
$$ \frac{ -2x^{2}+9x-3 }{ x-3 } = \color{blue}{-2x+3} ~+~ \frac{ \color{red}{ 6 } }{ x-3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -3 = 0 $ ( $ x = \color{blue}{ 3 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{3}&-2&9&-3\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}3&\color{orangered}{ -2 }&9&-3\\& & & \\ \hline &\color{orangered}{-2}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ -6 } $.
$$ \begin{array}{c|rrr}\color{blue}{3}&-2&9&-3\\& & \color{blue}{-6} & \\ \hline &\color{blue}{-2}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 9 } + \color{orangered}{ \left( -6 \right) } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrr}3&-2&\color{orangered}{ 9 }&-3\\& & \color{orangered}{-6} & \\ \hline &-2&\color{orangered}{3}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 3 } = \color{blue}{ 9 } $.
$$ \begin{array}{c|rrr}\color{blue}{3}&-2&9&-3\\& & -6& \color{blue}{9} \\ \hline &-2&\color{blue}{3}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ 9 } = \color{orangered}{ 6 } $
$$ \begin{array}{c|rrr}3&-2&9&\color{orangered}{ -3 }\\& & -6& \color{orangered}{9} \\ \hline &\color{blue}{-2}&\color{blue}{3}&\color{orangered}{6} \end{array} $$Bottom line represents the quotient $ \color{blue}{ -2x+3 } $ with a remainder of $ \color{red}{ 6 } $.