The synthetic division table is:
$$ \begin{array}{c|rrrrr}1&4&6&-6&-4&0\\& & 4& 10& 4& \color{black}{0} \\ \hline &\color{blue}{4}&\color{blue}{10}&\color{blue}{4}&\color{blue}{0}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ 4x^{4}+6x^{3}-6x^{2}-4x }{ x-1 } = \color{blue}{4x^{3}+10x^{2}+4x} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -1 = 0 $ ( $ x = \color{blue}{ 1 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&4&6&-6&-4&0\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}1&\color{orangered}{ 4 }&6&-6&-4&0\\& & & & & \\ \hline &\color{orangered}{4}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 4 } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&4&6&-6&-4&0\\& & \color{blue}{4} & & & \\ \hline &\color{blue}{4}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 6 } + \color{orangered}{ 4 } = \color{orangered}{ 10 } $
$$ \begin{array}{c|rrrrr}1&4&\color{orangered}{ 6 }&-6&-4&0\\& & \color{orangered}{4} & & & \\ \hline &4&\color{orangered}{10}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 10 } = \color{blue}{ 10 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&4&6&-6&-4&0\\& & 4& \color{blue}{10} & & \\ \hline &4&\color{blue}{10}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -6 } + \color{orangered}{ 10 } = \color{orangered}{ 4 } $
$$ \begin{array}{c|rrrrr}1&4&6&\color{orangered}{ -6 }&-4&0\\& & 4& \color{orangered}{10} & & \\ \hline &4&10&\color{orangered}{4}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 4 } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&4&6&-6&-4&0\\& & 4& 10& \color{blue}{4} & \\ \hline &4&10&\color{blue}{4}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -4 } + \color{orangered}{ 4 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}1&4&6&-6&\color{orangered}{ -4 }&0\\& & 4& 10& \color{orangered}{4} & \\ \hline &4&10&4&\color{orangered}{0}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&4&6&-6&-4&0\\& & 4& 10& 4& \color{blue}{0} \\ \hline &4&10&4&\color{blue}{0}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 0 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}1&4&6&-6&-4&\color{orangered}{ 0 }\\& & 4& 10& 4& \color{orangered}{0} \\ \hline &\color{blue}{4}&\color{blue}{10}&\color{blue}{4}&\color{blue}{0}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 4x^{3}+10x^{2}+4x } $ with a remainder of $ \color{red}{ 0 } $.