The synthetic division table is:
$$ \begin{array}{c|rrrr}-1&4&7&-4&-4\\& & -4& -3& \color{black}{7} \\ \hline &\color{blue}{4}&\color{blue}{3}&\color{blue}{-7}&\color{orangered}{3} \end{array} $$The solution is:
$$ \frac{ 4x^{3}+7x^{2}-4x-4 }{ x+1 } = \color{blue}{4x^{2}+3x-7} ~+~ \frac{ \color{red}{ 3 } }{ x+1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 1 = 0 $ ( $ x = \color{blue}{ -1 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&4&7&-4&-4\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-1&\color{orangered}{ 4 }&7&-4&-4\\& & & & \\ \hline &\color{orangered}{4}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 4 } = \color{blue}{ -4 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&4&7&-4&-4\\& & \color{blue}{-4} & & \\ \hline &\color{blue}{4}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 7 } + \color{orangered}{ \left( -4 \right) } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrrr}-1&4&\color{orangered}{ 7 }&-4&-4\\& & \color{orangered}{-4} & & \\ \hline &4&\color{orangered}{3}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 3 } = \color{blue}{ -3 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&4&7&-4&-4\\& & -4& \color{blue}{-3} & \\ \hline &4&\color{blue}{3}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -4 } + \color{orangered}{ \left( -3 \right) } = \color{orangered}{ -7 } $
$$ \begin{array}{c|rrrr}-1&4&7&\color{orangered}{ -4 }&-4\\& & -4& \color{orangered}{-3} & \\ \hline &4&3&\color{orangered}{-7}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ \left( -7 \right) } = \color{blue}{ 7 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&4&7&-4&-4\\& & -4& -3& \color{blue}{7} \\ \hline &4&3&\color{blue}{-7}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -4 } + \color{orangered}{ 7 } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrrr}-1&4&7&-4&\color{orangered}{ -4 }\\& & -4& -3& \color{orangered}{7} \\ \hline &\color{blue}{4}&\color{blue}{3}&\color{blue}{-7}&\color{orangered}{3} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 4x^{2}+3x-7 } $ with a remainder of $ \color{red}{ 3 } $.