The synthetic division table is:
$$ \begin{array}{c|rrrr}2&4&-2&-15&6\\& & 8& 12& \color{black}{-6} \\ \hline &\color{blue}{4}&\color{blue}{6}&\color{blue}{-3}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ 4x^{3}-2x^{2}-15x+6 }{ x-2 } = \color{blue}{4x^{2}+6x-3} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{2}&4&-2&-15&6\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}2&\color{orangered}{ 4 }&-2&-15&6\\& & & & \\ \hline &\color{orangered}{4}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 4 } = \color{blue}{ 8 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&4&-2&-15&6\\& & \color{blue}{8} & & \\ \hline &\color{blue}{4}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ 8 } = \color{orangered}{ 6 } $
$$ \begin{array}{c|rrrr}2&4&\color{orangered}{ -2 }&-15&6\\& & \color{orangered}{8} & & \\ \hline &4&\color{orangered}{6}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 6 } = \color{blue}{ 12 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&4&-2&-15&6\\& & 8& \color{blue}{12} & \\ \hline &4&\color{blue}{6}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -15 } + \color{orangered}{ 12 } = \color{orangered}{ -3 } $
$$ \begin{array}{c|rrrr}2&4&-2&\color{orangered}{ -15 }&6\\& & 8& \color{orangered}{12} & \\ \hline &4&6&\color{orangered}{-3}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -3 \right) } = \color{blue}{ -6 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&4&-2&-15&6\\& & 8& 12& \color{blue}{-6} \\ \hline &4&6&\color{blue}{-3}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 6 } + \color{orangered}{ \left( -6 \right) } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}2&4&-2&-15&\color{orangered}{ 6 }\\& & 8& 12& \color{orangered}{-6} \\ \hline &\color{blue}{4}&\color{blue}{6}&\color{blue}{-3}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 4x^{2}+6x-3 } $ with a remainder of $ \color{red}{ 0 } $.