The synthetic division table is:
$$ \begin{array}{c|rrrr}4&4&-10&-11&16\\& & 16& 24& \color{black}{52} \\ \hline &\color{blue}{4}&\color{blue}{6}&\color{blue}{13}&\color{orangered}{68} \end{array} $$The solution is:
$$ \frac{ 4x^{3}-10x^{2}-11x+16 }{ x-4 } = \color{blue}{4x^{2}+6x+13} ~+~ \frac{ \color{red}{ 68 } }{ x-4 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -4 = 0 $ ( $ x = \color{blue}{ 4 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{4}&4&-10&-11&16\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}4&\color{orangered}{ 4 }&-10&-11&16\\& & & & \\ \hline &\color{orangered}{4}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 4 } \cdot \color{blue}{ 4 } = \color{blue}{ 16 } $.
$$ \begin{array}{c|rrrr}\color{blue}{4}&4&-10&-11&16\\& & \color{blue}{16} & & \\ \hline &\color{blue}{4}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -10 } + \color{orangered}{ 16 } = \color{orangered}{ 6 } $
$$ \begin{array}{c|rrrr}4&4&\color{orangered}{ -10 }&-11&16\\& & \color{orangered}{16} & & \\ \hline &4&\color{orangered}{6}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 4 } \cdot \color{blue}{ 6 } = \color{blue}{ 24 } $.
$$ \begin{array}{c|rrrr}\color{blue}{4}&4&-10&-11&16\\& & 16& \color{blue}{24} & \\ \hline &4&\color{blue}{6}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -11 } + \color{orangered}{ 24 } = \color{orangered}{ 13 } $
$$ \begin{array}{c|rrrr}4&4&-10&\color{orangered}{ -11 }&16\\& & 16& \color{orangered}{24} & \\ \hline &4&6&\color{orangered}{13}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 4 } \cdot \color{blue}{ 13 } = \color{blue}{ 52 } $.
$$ \begin{array}{c|rrrr}\color{blue}{4}&4&-10&-11&16\\& & 16& 24& \color{blue}{52} \\ \hline &4&6&\color{blue}{13}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 16 } + \color{orangered}{ 52 } = \color{orangered}{ 68 } $
$$ \begin{array}{c|rrrr}4&4&-10&-11&\color{orangered}{ 16 }\\& & 16& 24& \color{orangered}{52} \\ \hline &\color{blue}{4}&\color{blue}{6}&\color{blue}{13}&\color{orangered}{68} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 4x^{2}+6x+13 } $ with a remainder of $ \color{red}{ 68 } $.