The synthetic division table is:
$$ \begin{array}{c|rrr}2&4&-13&-5\\& & 8& \color{black}{-10} \\ \hline &\color{blue}{4}&\color{blue}{-5}&\color{orangered}{-15} \end{array} $$The solution is:
$$ \frac{ 4x^{2}-13x-5 }{ x-2 } = \color{blue}{4x-5} \color{red}{~-~} \frac{ \color{red}{ 15 } }{ x-2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{2}&4&-13&-5\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}2&\color{orangered}{ 4 }&-13&-5\\& & & \\ \hline &\color{orangered}{4}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 4 } = \color{blue}{ 8 } $.
$$ \begin{array}{c|rrr}\color{blue}{2}&4&-13&-5\\& & \color{blue}{8} & \\ \hline &\color{blue}{4}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -13 } + \color{orangered}{ 8 } = \color{orangered}{ -5 } $
$$ \begin{array}{c|rrr}2&4&\color{orangered}{ -13 }&-5\\& & \color{orangered}{8} & \\ \hline &4&\color{orangered}{-5}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -5 \right) } = \color{blue}{ -10 } $.
$$ \begin{array}{c|rrr}\color{blue}{2}&4&-13&-5\\& & 8& \color{blue}{-10} \\ \hline &4&\color{blue}{-5}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -5 } + \color{orangered}{ \left( -10 \right) } = \color{orangered}{ -15 } $
$$ \begin{array}{c|rrr}2&4&-13&\color{orangered}{ -5 }\\& & 8& \color{orangered}{-10} \\ \hline &\color{blue}{4}&\color{blue}{-5}&\color{orangered}{-15} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 4x-5 } $ with a remainder of $ \color{red}{ -15 } $.