The synthetic division table is:
$$ \begin{array}{c|rrrr}0&3&18&19&-3\\& & 0& 0& \color{black}{0} \\ \hline &\color{blue}{3}&\color{blue}{18}&\color{blue}{19}&\color{orangered}{-3} \end{array} $$The solution is:
$$ \frac{ 3x^{3}+18x^{2}+19x-3 }{ x } = \color{blue}{3x^{2}+18x+19} \color{red}{~-~} \frac{ \color{red}{ 3 } }{ x } $$Step 1 : Write down the coefficients of the dividend into division table.Put the zero at the left.
$$ \begin{array}{c|rrrr}\color{blue}{0}&3&18&19&-3\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}0&\color{orangered}{ 3 }&18&19&-3\\& & & & \\ \hline &\color{orangered}{3}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ 3 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrr}\color{blue}{0}&3&18&19&-3\\& & \color{blue}{0} & & \\ \hline &\color{blue}{3}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 18 } + \color{orangered}{ 0 } = \color{orangered}{ 18 } $
$$ \begin{array}{c|rrrr}0&3&\color{orangered}{ 18 }&19&-3\\& & \color{orangered}{0} & & \\ \hline &3&\color{orangered}{18}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ 18 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrr}\color{blue}{0}&3&18&19&-3\\& & 0& \color{blue}{0} & \\ \hline &3&\color{blue}{18}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 19 } + \color{orangered}{ 0 } = \color{orangered}{ 19 } $
$$ \begin{array}{c|rrrr}0&3&18&\color{orangered}{ 19 }&-3\\& & 0& \color{orangered}{0} & \\ \hline &3&18&\color{orangered}{19}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ 19 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrr}\color{blue}{0}&3&18&19&-3\\& & 0& 0& \color{blue}{0} \\ \hline &3&18&\color{blue}{19}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ 0 } = \color{orangered}{ -3 } $
$$ \begin{array}{c|rrrr}0&3&18&19&\color{orangered}{ -3 }\\& & 0& 0& \color{orangered}{0} \\ \hline &\color{blue}{3}&\color{blue}{18}&\color{blue}{19}&\color{orangered}{-3} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 3x^{2}+18x+19 } $ with a remainder of $ \color{red}{ -3 } $.