The synthetic division table is:
$$ \begin{array}{c|rrrr}2&3&-16&25&-10\\& & 6& -20& \color{black}{10} \\ \hline &\color{blue}{3}&\color{blue}{-10}&\color{blue}{5}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ 3x^{3}-16x^{2}+25x-10 }{ x-2 } = \color{blue}{3x^{2}-10x+5} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{2}&3&-16&25&-10\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}2&\color{orangered}{ 3 }&-16&25&-10\\& & & & \\ \hline &\color{orangered}{3}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 3 } = \color{blue}{ 6 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&3&-16&25&-10\\& & \color{blue}{6} & & \\ \hline &\color{blue}{3}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -16 } + \color{orangered}{ 6 } = \color{orangered}{ -10 } $
$$ \begin{array}{c|rrrr}2&3&\color{orangered}{ -16 }&25&-10\\& & \color{orangered}{6} & & \\ \hline &3&\color{orangered}{-10}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -10 \right) } = \color{blue}{ -20 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&3&-16&25&-10\\& & 6& \color{blue}{-20} & \\ \hline &3&\color{blue}{-10}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 25 } + \color{orangered}{ \left( -20 \right) } = \color{orangered}{ 5 } $
$$ \begin{array}{c|rrrr}2&3&-16&\color{orangered}{ 25 }&-10\\& & 6& \color{orangered}{-20} & \\ \hline &3&-10&\color{orangered}{5}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 5 } = \color{blue}{ 10 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&3&-16&25&-10\\& & 6& -20& \color{blue}{10} \\ \hline &3&-10&\color{blue}{5}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -10 } + \color{orangered}{ 10 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}2&3&-16&25&\color{orangered}{ -10 }\\& & 6& -20& \color{orangered}{10} \\ \hline &\color{blue}{3}&\color{blue}{-10}&\color{blue}{5}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 3x^{2}-10x+5 } $ with a remainder of $ \color{red}{ 0 } $.