The synthetic division table is:
$$ \begin{array}{c|rrrrr}3&3&14&-9&-22&-10\\& & 9& 69& 180& \color{black}{474} \\ \hline &\color{blue}{3}&\color{blue}{23}&\color{blue}{60}&\color{blue}{158}&\color{orangered}{464} \end{array} $$The solution is:
$$ \frac{ 3x^{4}+14x^{3}-9x^{2}-22x-10 }{ x-3 } = \color{blue}{3x^{3}+23x^{2}+60x+158} ~+~ \frac{ \color{red}{ 464 } }{ x-3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -3 = 0 $ ( $ x = \color{blue}{ 3 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&3&14&-9&-22&-10\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}3&\color{orangered}{ 3 }&14&-9&-22&-10\\& & & & & \\ \hline &\color{orangered}{3}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 3 } = \color{blue}{ 9 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&3&14&-9&-22&-10\\& & \color{blue}{9} & & & \\ \hline &\color{blue}{3}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 14 } + \color{orangered}{ 9 } = \color{orangered}{ 23 } $
$$ \begin{array}{c|rrrrr}3&3&\color{orangered}{ 14 }&-9&-22&-10\\& & \color{orangered}{9} & & & \\ \hline &3&\color{orangered}{23}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 23 } = \color{blue}{ 69 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&3&14&-9&-22&-10\\& & 9& \color{blue}{69} & & \\ \hline &3&\color{blue}{23}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -9 } + \color{orangered}{ 69 } = \color{orangered}{ 60 } $
$$ \begin{array}{c|rrrrr}3&3&14&\color{orangered}{ -9 }&-22&-10\\& & 9& \color{orangered}{69} & & \\ \hline &3&23&\color{orangered}{60}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 60 } = \color{blue}{ 180 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&3&14&-9&-22&-10\\& & 9& 69& \color{blue}{180} & \\ \hline &3&23&\color{blue}{60}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -22 } + \color{orangered}{ 180 } = \color{orangered}{ 158 } $
$$ \begin{array}{c|rrrrr}3&3&14&-9&\color{orangered}{ -22 }&-10\\& & 9& 69& \color{orangered}{180} & \\ \hline &3&23&60&\color{orangered}{158}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 158 } = \color{blue}{ 474 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&3&14&-9&-22&-10\\& & 9& 69& 180& \color{blue}{474} \\ \hline &3&23&60&\color{blue}{158}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -10 } + \color{orangered}{ 474 } = \color{orangered}{ 464 } $
$$ \begin{array}{c|rrrrr}3&3&14&-9&-22&\color{orangered}{ -10 }\\& & 9& 69& 180& \color{orangered}{474} \\ \hline &\color{blue}{3}&\color{blue}{23}&\color{blue}{60}&\color{blue}{158}&\color{orangered}{464} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 3x^{3}+23x^{2}+60x+158 } $ with a remainder of $ \color{red}{ 464 } $.