The synthetic division table is:
$$ \begin{array}{c|rrrrr}3&3&-2&-19&-14&24\\& & 9& 21& 6& \color{black}{-24} \\ \hline &\color{blue}{3}&\color{blue}{7}&\color{blue}{2}&\color{blue}{-8}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ 3x^{4}-2x^{3}-19x^{2}-14x+24 }{ x-3 } = \color{blue}{3x^{3}+7x^{2}+2x-8} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -3 = 0 $ ( $ x = \color{blue}{ 3 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&3&-2&-19&-14&24\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}3&\color{orangered}{ 3 }&-2&-19&-14&24\\& & & & & \\ \hline &\color{orangered}{3}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 3 } = \color{blue}{ 9 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&3&-2&-19&-14&24\\& & \color{blue}{9} & & & \\ \hline &\color{blue}{3}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ 9 } = \color{orangered}{ 7 } $
$$ \begin{array}{c|rrrrr}3&3&\color{orangered}{ -2 }&-19&-14&24\\& & \color{orangered}{9} & & & \\ \hline &3&\color{orangered}{7}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 7 } = \color{blue}{ 21 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&3&-2&-19&-14&24\\& & 9& \color{blue}{21} & & \\ \hline &3&\color{blue}{7}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -19 } + \color{orangered}{ 21 } = \color{orangered}{ 2 } $
$$ \begin{array}{c|rrrrr}3&3&-2&\color{orangered}{ -19 }&-14&24\\& & 9& \color{orangered}{21} & & \\ \hline &3&7&\color{orangered}{2}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 2 } = \color{blue}{ 6 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&3&-2&-19&-14&24\\& & 9& 21& \color{blue}{6} & \\ \hline &3&7&\color{blue}{2}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -14 } + \color{orangered}{ 6 } = \color{orangered}{ -8 } $
$$ \begin{array}{c|rrrrr}3&3&-2&-19&\color{orangered}{ -14 }&24\\& & 9& 21& \color{orangered}{6} & \\ \hline &3&7&2&\color{orangered}{-8}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ \left( -8 \right) } = \color{blue}{ -24 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&3&-2&-19&-14&24\\& & 9& 21& 6& \color{blue}{-24} \\ \hline &3&7&2&\color{blue}{-8}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 24 } + \color{orangered}{ \left( -24 \right) } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}3&3&-2&-19&-14&\color{orangered}{ 24 }\\& & 9& 21& 6& \color{orangered}{-24} \\ \hline &\color{blue}{3}&\color{blue}{7}&\color{blue}{2}&\color{blue}{-8}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 3x^{3}+7x^{2}+2x-8 } $ with a remainder of $ \color{red}{ 0 } $.