The synthetic division table is:
$$ \begin{array}{c|rrrr}4&3&-5&-17&-12\\& & 12& 28& \color{black}{44} \\ \hline &\color{blue}{3}&\color{blue}{7}&\color{blue}{11}&\color{orangered}{32} \end{array} $$The solution is:
$$ \frac{ 3x^{3}-5x^{2}-17x-12 }{ x-4 } = \color{blue}{3x^{2}+7x+11} ~+~ \frac{ \color{red}{ 32 } }{ x-4 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -4 = 0 $ ( $ x = \color{blue}{ 4 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{4}&3&-5&-17&-12\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}4&\color{orangered}{ 3 }&-5&-17&-12\\& & & & \\ \hline &\color{orangered}{3}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 4 } \cdot \color{blue}{ 3 } = \color{blue}{ 12 } $.
$$ \begin{array}{c|rrrr}\color{blue}{4}&3&-5&-17&-12\\& & \color{blue}{12} & & \\ \hline &\color{blue}{3}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -5 } + \color{orangered}{ 12 } = \color{orangered}{ 7 } $
$$ \begin{array}{c|rrrr}4&3&\color{orangered}{ -5 }&-17&-12\\& & \color{orangered}{12} & & \\ \hline &3&\color{orangered}{7}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 4 } \cdot \color{blue}{ 7 } = \color{blue}{ 28 } $.
$$ \begin{array}{c|rrrr}\color{blue}{4}&3&-5&-17&-12\\& & 12& \color{blue}{28} & \\ \hline &3&\color{blue}{7}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -17 } + \color{orangered}{ 28 } = \color{orangered}{ 11 } $
$$ \begin{array}{c|rrrr}4&3&-5&\color{orangered}{ -17 }&-12\\& & 12& \color{orangered}{28} & \\ \hline &3&7&\color{orangered}{11}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 4 } \cdot \color{blue}{ 11 } = \color{blue}{ 44 } $.
$$ \begin{array}{c|rrrr}\color{blue}{4}&3&-5&-17&-12\\& & 12& 28& \color{blue}{44} \\ \hline &3&7&\color{blue}{11}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -12 } + \color{orangered}{ 44 } = \color{orangered}{ 32 } $
$$ \begin{array}{c|rrrr}4&3&-5&-17&\color{orangered}{ -12 }\\& & 12& 28& \color{orangered}{44} \\ \hline &\color{blue}{3}&\color{blue}{7}&\color{blue}{11}&\color{orangered}{32} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 3x^{2}+7x+11 } $ with a remainder of $ \color{red}{ 32 } $.