The synthetic division table is:
$$ \begin{array}{c|rrrr}3&3&-19&33&-9\\& & 9& -30& \color{black}{9} \\ \hline &\color{blue}{3}&\color{blue}{-10}&\color{blue}{3}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ 3x^{3}-19x^{2}+33x-9 }{ x-3 } = \color{blue}{3x^{2}-10x+3} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -3 = 0 $ ( $ x = \color{blue}{ 3 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{3}&3&-19&33&-9\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}3&\color{orangered}{ 3 }&-19&33&-9\\& & & & \\ \hline &\color{orangered}{3}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 3 } = \color{blue}{ 9 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&3&-19&33&-9\\& & \color{blue}{9} & & \\ \hline &\color{blue}{3}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -19 } + \color{orangered}{ 9 } = \color{orangered}{ -10 } $
$$ \begin{array}{c|rrrr}3&3&\color{orangered}{ -19 }&33&-9\\& & \color{orangered}{9} & & \\ \hline &3&\color{orangered}{-10}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ \left( -10 \right) } = \color{blue}{ -30 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&3&-19&33&-9\\& & 9& \color{blue}{-30} & \\ \hline &3&\color{blue}{-10}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 33 } + \color{orangered}{ \left( -30 \right) } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrrr}3&3&-19&\color{orangered}{ 33 }&-9\\& & 9& \color{orangered}{-30} & \\ \hline &3&-10&\color{orangered}{3}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 3 } = \color{blue}{ 9 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&3&-19&33&-9\\& & 9& -30& \color{blue}{9} \\ \hline &3&-10&\color{blue}{3}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -9 } + \color{orangered}{ 9 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}3&3&-19&33&\color{orangered}{ -9 }\\& & 9& -30& \color{orangered}{9} \\ \hline &\color{blue}{3}&\color{blue}{-10}&\color{blue}{3}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 3x^{2}-10x+3 } $ with a remainder of $ \color{red}{ 0 } $.