The synthetic division table is:
$$ \begin{array}{c|rrrr}5&3&-17&15&-25\\& & 15& -10& \color{black}{25} \\ \hline &\color{blue}{3}&\color{blue}{-2}&\color{blue}{5}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ 3x^{3}-17x^{2}+15x-25 }{ x-5 } = \color{blue}{3x^{2}-2x+5} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -5 = 0 $ ( $ x = \color{blue}{ 5 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{5}&3&-17&15&-25\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}5&\color{orangered}{ 3 }&-17&15&-25\\& & & & \\ \hline &\color{orangered}{3}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 5 } \cdot \color{blue}{ 3 } = \color{blue}{ 15 } $.
$$ \begin{array}{c|rrrr}\color{blue}{5}&3&-17&15&-25\\& & \color{blue}{15} & & \\ \hline &\color{blue}{3}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -17 } + \color{orangered}{ 15 } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rrrr}5&3&\color{orangered}{ -17 }&15&-25\\& & \color{orangered}{15} & & \\ \hline &3&\color{orangered}{-2}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 5 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ -10 } $.
$$ \begin{array}{c|rrrr}\color{blue}{5}&3&-17&15&-25\\& & 15& \color{blue}{-10} & \\ \hline &3&\color{blue}{-2}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 15 } + \color{orangered}{ \left( -10 \right) } = \color{orangered}{ 5 } $
$$ \begin{array}{c|rrrr}5&3&-17&\color{orangered}{ 15 }&-25\\& & 15& \color{orangered}{-10} & \\ \hline &3&-2&\color{orangered}{5}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 5 } \cdot \color{blue}{ 5 } = \color{blue}{ 25 } $.
$$ \begin{array}{c|rrrr}\color{blue}{5}&3&-17&15&-25\\& & 15& -10& \color{blue}{25} \\ \hline &3&-2&\color{blue}{5}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -25 } + \color{orangered}{ 25 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}5&3&-17&15&\color{orangered}{ -25 }\\& & 15& -10& \color{orangered}{25} \\ \hline &\color{blue}{3}&\color{blue}{-2}&\color{blue}{5}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 3x^{2}-2x+5 } $ with a remainder of $ \color{red}{ 0 } $.