The synthetic division table is:
$$ \begin{array}{c|rrrr}2&3&-17&13&-10\\& & 6& -22& \color{black}{-18} \\ \hline &\color{blue}{3}&\color{blue}{-11}&\color{blue}{-9}&\color{orangered}{-28} \end{array} $$The solution is:
$$ \frac{ 3x^{3}-17x^{2}+13x-10 }{ x-2 } = \color{blue}{3x^{2}-11x-9} \color{red}{~-~} \frac{ \color{red}{ 28 } }{ x-2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{2}&3&-17&13&-10\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}2&\color{orangered}{ 3 }&-17&13&-10\\& & & & \\ \hline &\color{orangered}{3}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 3 } = \color{blue}{ 6 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&3&-17&13&-10\\& & \color{blue}{6} & & \\ \hline &\color{blue}{3}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -17 } + \color{orangered}{ 6 } = \color{orangered}{ -11 } $
$$ \begin{array}{c|rrrr}2&3&\color{orangered}{ -17 }&13&-10\\& & \color{orangered}{6} & & \\ \hline &3&\color{orangered}{-11}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -11 \right) } = \color{blue}{ -22 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&3&-17&13&-10\\& & 6& \color{blue}{-22} & \\ \hline &3&\color{blue}{-11}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 13 } + \color{orangered}{ \left( -22 \right) } = \color{orangered}{ -9 } $
$$ \begin{array}{c|rrrr}2&3&-17&\color{orangered}{ 13 }&-10\\& & 6& \color{orangered}{-22} & \\ \hline &3&-11&\color{orangered}{-9}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -9 \right) } = \color{blue}{ -18 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&3&-17&13&-10\\& & 6& -22& \color{blue}{-18} \\ \hline &3&-11&\color{blue}{-9}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -10 } + \color{orangered}{ \left( -18 \right) } = \color{orangered}{ -28 } $
$$ \begin{array}{c|rrrr}2&3&-17&13&\color{orangered}{ -10 }\\& & 6& -22& \color{orangered}{-18} \\ \hline &\color{blue}{3}&\color{blue}{-11}&\color{blue}{-9}&\color{orangered}{-28} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 3x^{2}-11x-9 } $ with a remainder of $ \color{red}{ -28 } $.