The synthetic division table is:
$$ \begin{array}{c|rrrr}2&3&0&25&-26\\& & 6& 12& \color{black}{74} \\ \hline &\color{blue}{3}&\color{blue}{6}&\color{blue}{37}&\color{orangered}{48} \end{array} $$The solution is:
$$ \frac{ 3x^{3}+25x-26 }{ x-2 } = \color{blue}{3x^{2}+6x+37} ~+~ \frac{ \color{red}{ 48 } }{ x-2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{2}&3&0&25&-26\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}2&\color{orangered}{ 3 }&0&25&-26\\& & & & \\ \hline &\color{orangered}{3}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 3 } = \color{blue}{ 6 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&3&0&25&-26\\& & \color{blue}{6} & & \\ \hline &\color{blue}{3}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 6 } = \color{orangered}{ 6 } $
$$ \begin{array}{c|rrrr}2&3&\color{orangered}{ 0 }&25&-26\\& & \color{orangered}{6} & & \\ \hline &3&\color{orangered}{6}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 6 } = \color{blue}{ 12 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&3&0&25&-26\\& & 6& \color{blue}{12} & \\ \hline &3&\color{blue}{6}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 25 } + \color{orangered}{ 12 } = \color{orangered}{ 37 } $
$$ \begin{array}{c|rrrr}2&3&0&\color{orangered}{ 25 }&-26\\& & 6& \color{orangered}{12} & \\ \hline &3&6&\color{orangered}{37}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 37 } = \color{blue}{ 74 } $.
$$ \begin{array}{c|rrrr}\color{blue}{2}&3&0&25&-26\\& & 6& 12& \color{blue}{74} \\ \hline &3&6&\color{blue}{37}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -26 } + \color{orangered}{ 74 } = \color{orangered}{ 48 } $
$$ \begin{array}{c|rrrr}2&3&0&25&\color{orangered}{ -26 }\\& & 6& 12& \color{orangered}{74} \\ \hline &\color{blue}{3}&\color{blue}{6}&\color{blue}{37}&\color{orangered}{48} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 3x^{2}+6x+37 } $ with a remainder of $ \color{red}{ 48 } $.