The synthetic division table is:
$$ \begin{array}{c|rrr}-3&3&7&-6\\& & -9& \color{black}{6} \\ \hline &\color{blue}{3}&\color{blue}{-2}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ 3x^{2}+7x-6 }{ x+3 } = \color{blue}{3x-2} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 3 = 0 $ ( $ x = \color{blue}{ -3 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{-3}&3&7&-6\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}-3&\color{orangered}{ 3 }&7&-6\\& & & \\ \hline &\color{orangered}{3}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 3 } = \color{blue}{ -9 } $.
$$ \begin{array}{c|rrr}\color{blue}{-3}&3&7&-6\\& & \color{blue}{-9} & \\ \hline &\color{blue}{3}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 7 } + \color{orangered}{ \left( -9 \right) } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rrr}-3&3&\color{orangered}{ 7 }&-6\\& & \color{orangered}{-9} & \\ \hline &3&\color{orangered}{-2}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ 6 } $.
$$ \begin{array}{c|rrr}\color{blue}{-3}&3&7&-6\\& & -9& \color{blue}{6} \\ \hline &3&\color{blue}{-2}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -6 } + \color{orangered}{ 6 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrr}-3&3&7&\color{orangered}{ -6 }\\& & -9& \color{orangered}{6} \\ \hline &\color{blue}{3}&\color{blue}{-2}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 3x-2 } $ with a remainder of $ \color{red}{ 0 } $.