The synthetic division table is:
$$ \begin{array}{c|rrr}1&3&-8&7\\& & 3& \color{black}{-5} \\ \hline &\color{blue}{3}&\color{blue}{-5}&\color{orangered}{2} \end{array} $$The solution is:
$$ \frac{ 3x^{2}-8x+7 }{ x-1 } = \color{blue}{3x-5} ~+~ \frac{ \color{red}{ 2 } }{ x-1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -1 = 0 $ ( $ x = \color{blue}{ 1 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{1}&3&-8&7\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}1&\color{orangered}{ 3 }&-8&7\\& & & \\ \hline &\color{orangered}{3}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 3 } = \color{blue}{ 3 } $.
$$ \begin{array}{c|rrr}\color{blue}{1}&3&-8&7\\& & \color{blue}{3} & \\ \hline &\color{blue}{3}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -8 } + \color{orangered}{ 3 } = \color{orangered}{ -5 } $
$$ \begin{array}{c|rrr}1&3&\color{orangered}{ -8 }&7\\& & \color{orangered}{3} & \\ \hline &3&\color{orangered}{-5}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ \left( -5 \right) } = \color{blue}{ -5 } $.
$$ \begin{array}{c|rrr}\color{blue}{1}&3&-8&7\\& & 3& \color{blue}{-5} \\ \hline &3&\color{blue}{-5}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 7 } + \color{orangered}{ \left( -5 \right) } = \color{orangered}{ 2 } $
$$ \begin{array}{c|rrr}1&3&-8&\color{orangered}{ 7 }\\& & 3& \color{orangered}{-5} \\ \hline &\color{blue}{3}&\color{blue}{-5}&\color{orangered}{2} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 3x-5 } $ with a remainder of $ \color{red}{ 2 } $.