The synthetic division table is:
$$ \begin{array}{c|rrr}2&3&-2&7\\& & 6& \color{black}{8} \\ \hline &\color{blue}{3}&\color{blue}{4}&\color{orangered}{15} \end{array} $$The solution is:
$$ \frac{ 3x^{2}-2x+7 }{ x-2 } = \color{blue}{3x+4} ~+~ \frac{ \color{red}{ 15 } }{ x-2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{2}&3&-2&7\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}2&\color{orangered}{ 3 }&-2&7\\& & & \\ \hline &\color{orangered}{3}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 3 } = \color{blue}{ 6 } $.
$$ \begin{array}{c|rrr}\color{blue}{2}&3&-2&7\\& & \color{blue}{6} & \\ \hline &\color{blue}{3}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ 6 } = \color{orangered}{ 4 } $
$$ \begin{array}{c|rrr}2&3&\color{orangered}{ -2 }&7\\& & \color{orangered}{6} & \\ \hline &3&\color{orangered}{4}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 4 } = \color{blue}{ 8 } $.
$$ \begin{array}{c|rrr}\color{blue}{2}&3&-2&7\\& & 6& \color{blue}{8} \\ \hline &3&\color{blue}{4}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 7 } + \color{orangered}{ 8 } = \color{orangered}{ 15 } $
$$ \begin{array}{c|rrr}2&3&-2&\color{orangered}{ 7 }\\& & 6& \color{orangered}{8} \\ \hline &\color{blue}{3}&\color{blue}{4}&\color{orangered}{15} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 3x+4 } $ with a remainder of $ \color{red}{ 15 } $.