The synthetic division table is:
$$ \begin{array}{c|rrrrr}0&3&4&-32&-5&-20\\& & 0& 0& 0& \color{black}{0} \\ \hline &\color{blue}{3}&\color{blue}{4}&\color{blue}{-32}&\color{blue}{-5}&\color{orangered}{-20} \end{array} $$The solution is:
$$ \frac{ 3x^{4}+4x^{3}-32x^{2}-5x-20 }{ x } = \color{blue}{3x^{3}+4x^{2}-32x-5} \color{red}{~-~} \frac{ \color{red}{ 20 } }{ x } $$Step 1 : Write down the coefficients of the dividend into division table.Put the zero at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{0}&3&4&-32&-5&-20\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}0&\color{orangered}{ 3 }&4&-32&-5&-20\\& & & & & \\ \hline &\color{orangered}{3}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ 3 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{0}&3&4&-32&-5&-20\\& & \color{blue}{0} & & & \\ \hline &\color{blue}{3}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 4 } + \color{orangered}{ 0 } = \color{orangered}{ 4 } $
$$ \begin{array}{c|rrrrr}0&3&\color{orangered}{ 4 }&-32&-5&-20\\& & \color{orangered}{0} & & & \\ \hline &3&\color{orangered}{4}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ 4 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{0}&3&4&-32&-5&-20\\& & 0& \color{blue}{0} & & \\ \hline &3&\color{blue}{4}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -32 } + \color{orangered}{ 0 } = \color{orangered}{ -32 } $
$$ \begin{array}{c|rrrrr}0&3&4&\color{orangered}{ -32 }&-5&-20\\& & 0& \color{orangered}{0} & & \\ \hline &3&4&\color{orangered}{-32}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ \left( -32 \right) } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{0}&3&4&-32&-5&-20\\& & 0& 0& \color{blue}{0} & \\ \hline &3&4&\color{blue}{-32}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -5 } + \color{orangered}{ 0 } = \color{orangered}{ -5 } $
$$ \begin{array}{c|rrrrr}0&3&4&-32&\color{orangered}{ -5 }&-20\\& & 0& 0& \color{orangered}{0} & \\ \hline &3&4&-32&\color{orangered}{-5}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ \left( -5 \right) } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{0}&3&4&-32&-5&-20\\& & 0& 0& 0& \color{blue}{0} \\ \hline &3&4&-32&\color{blue}{-5}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -20 } + \color{orangered}{ 0 } = \color{orangered}{ -20 } $
$$ \begin{array}{c|rrrrr}0&3&4&-32&-5&\color{orangered}{ -20 }\\& & 0& 0& 0& \color{orangered}{0} \\ \hline &\color{blue}{3}&\color{blue}{4}&\color{blue}{-32}&\color{blue}{-5}&\color{orangered}{-20} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 3x^{3}+4x^{2}-32x-5 } $ with a remainder of $ \color{red}{ -20 } $.