The synthetic division table is:
$$ \begin{array}{c|rrrrr}-1&-3&0&2&2&-9\\& & 3& -3& 1& \color{black}{-3} \\ \hline &\color{blue}{-3}&\color{blue}{3}&\color{blue}{-1}&\color{blue}{3}&\color{orangered}{-12} \end{array} $$The solution is:
$$ \frac{ -3x^{4}+2x^{2}+2x-9 }{ x+1 } = \color{blue}{-3x^{3}+3x^{2}-x+3} \color{red}{~-~} \frac{ \color{red}{ 12 } }{ x+1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 1 = 0 $ ( $ x = \color{blue}{ -1 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{-1}&-3&0&2&2&-9\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}-1&\color{orangered}{ -3 }&0&2&2&-9\\& & & & & \\ \hline &\color{orangered}{-3}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ \left( -3 \right) } = \color{blue}{ 3 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-1}&-3&0&2&2&-9\\& & \color{blue}{3} & & & \\ \hline &\color{blue}{-3}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 3 } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrrrr}-1&-3&\color{orangered}{ 0 }&2&2&-9\\& & \color{orangered}{3} & & & \\ \hline &-3&\color{orangered}{3}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 3 } = \color{blue}{ -3 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-1}&-3&0&2&2&-9\\& & 3& \color{blue}{-3} & & \\ \hline &-3&\color{blue}{3}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 2 } + \color{orangered}{ \left( -3 \right) } = \color{orangered}{ -1 } $
$$ \begin{array}{c|rrrrr}-1&-3&0&\color{orangered}{ 2 }&2&-9\\& & 3& \color{orangered}{-3} & & \\ \hline &-3&3&\color{orangered}{-1}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ \left( -1 \right) } = \color{blue}{ 1 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-1}&-3&0&2&2&-9\\& & 3& -3& \color{blue}{1} & \\ \hline &-3&3&\color{blue}{-1}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 2 } + \color{orangered}{ 1 } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrrrr}-1&-3&0&2&\color{orangered}{ 2 }&-9\\& & 3& -3& \color{orangered}{1} & \\ \hline &-3&3&-1&\color{orangered}{3}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 3 } = \color{blue}{ -3 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-1}&-3&0&2&2&-9\\& & 3& -3& 1& \color{blue}{-3} \\ \hline &-3&3&-1&\color{blue}{3}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -9 } + \color{orangered}{ \left( -3 \right) } = \color{orangered}{ -12 } $
$$ \begin{array}{c|rrrrr}-1&-3&0&2&2&\color{orangered}{ -9 }\\& & 3& -3& 1& \color{orangered}{-3} \\ \hline &\color{blue}{-3}&\color{blue}{3}&\color{blue}{-1}&\color{blue}{3}&\color{orangered}{-12} \end{array} $$Bottom line represents the quotient $ \color{blue}{ -3x^{3}+3x^{2}-x+3 } $ with a remainder of $ \color{red}{ -12 } $.