The synthetic division table is:
$$ \begin{array}{c|rrrrr}3&2&-6&1&-3&-3\\& & 6& 0& 3& \color{black}{0} \\ \hline &\color{blue}{2}&\color{blue}{0}&\color{blue}{1}&\color{blue}{0}&\color{orangered}{-3} \end{array} $$The solution is:
$$ \frac{ 2x^{4}-6x^{3}+x^{2}-3x-3 }{ x-3 } = \color{blue}{2x^{3}+x} \color{red}{~-~} \frac{ \color{red}{ 3 } }{ x-3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -3 = 0 $ ( $ x = \color{blue}{ 3 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&2&-6&1&-3&-3\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}3&\color{orangered}{ 2 }&-6&1&-3&-3\\& & & & & \\ \hline &\color{orangered}{2}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 2 } = \color{blue}{ 6 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&2&-6&1&-3&-3\\& & \color{blue}{6} & & & \\ \hline &\color{blue}{2}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -6 } + \color{orangered}{ 6 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}3&2&\color{orangered}{ -6 }&1&-3&-3\\& & \color{orangered}{6} & & & \\ \hline &2&\color{orangered}{0}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&2&-6&1&-3&-3\\& & 6& \color{blue}{0} & & \\ \hline &2&\color{blue}{0}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 1 } + \color{orangered}{ 0 } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrrrr}3&2&-6&\color{orangered}{ 1 }&-3&-3\\& & 6& \color{orangered}{0} & & \\ \hline &2&0&\color{orangered}{1}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 1 } = \color{blue}{ 3 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&2&-6&1&-3&-3\\& & 6& 0& \color{blue}{3} & \\ \hline &2&0&\color{blue}{1}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ 3 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}3&2&-6&1&\color{orangered}{ -3 }&-3\\& & 6& 0& \color{orangered}{3} & \\ \hline &2&0&1&\color{orangered}{0}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{3}&2&-6&1&-3&-3\\& & 6& 0& 3& \color{blue}{0} \\ \hline &2&0&1&\color{blue}{0}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ 0 } = \color{orangered}{ -3 } $
$$ \begin{array}{c|rrrrr}3&2&-6&1&-3&\color{orangered}{ -3 }\\& & 6& 0& 3& \color{orangered}{0} \\ \hline &\color{blue}{2}&\color{blue}{0}&\color{blue}{1}&\color{blue}{0}&\color{orangered}{-3} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 2x^{3}+x } $ with a remainder of $ \color{red}{ -3 } $.