The synthetic division table is:
$$ \begin{array}{c|rrrrr}-3&2&-3&-14&33&-18\\& & -6& 27& -39& \color{black}{18} \\ \hline &\color{blue}{2}&\color{blue}{-9}&\color{blue}{13}&\color{blue}{-6}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ 2x^{4}-3x^{3}-14x^{2}+33x-18 }{ x+3 } = \color{blue}{2x^{3}-9x^{2}+13x-6} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 3 = 0 $ ( $ x = \color{blue}{ -3 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{-3}&2&-3&-14&33&-18\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}-3&\color{orangered}{ 2 }&-3&-14&33&-18\\& & & & & \\ \hline &\color{orangered}{2}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 2 } = \color{blue}{ -6 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-3}&2&-3&-14&33&-18\\& & \color{blue}{-6} & & & \\ \hline &\color{blue}{2}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ \left( -6 \right) } = \color{orangered}{ -9 } $
$$ \begin{array}{c|rrrrr}-3&2&\color{orangered}{ -3 }&-14&33&-18\\& & \color{orangered}{-6} & & & \\ \hline &2&\color{orangered}{-9}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ \left( -9 \right) } = \color{blue}{ 27 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-3}&2&-3&-14&33&-18\\& & -6& \color{blue}{27} & & \\ \hline &2&\color{blue}{-9}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -14 } + \color{orangered}{ 27 } = \color{orangered}{ 13 } $
$$ \begin{array}{c|rrrrr}-3&2&-3&\color{orangered}{ -14 }&33&-18\\& & -6& \color{orangered}{27} & & \\ \hline &2&-9&\color{orangered}{13}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 13 } = \color{blue}{ -39 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-3}&2&-3&-14&33&-18\\& & -6& 27& \color{blue}{-39} & \\ \hline &2&-9&\color{blue}{13}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 33 } + \color{orangered}{ \left( -39 \right) } = \color{orangered}{ -6 } $
$$ \begin{array}{c|rrrrr}-3&2&-3&-14&\color{orangered}{ 33 }&-18\\& & -6& 27& \color{orangered}{-39} & \\ \hline &2&-9&13&\color{orangered}{-6}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ \left( -6 \right) } = \color{blue}{ 18 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-3}&2&-3&-14&33&-18\\& & -6& 27& -39& \color{blue}{18} \\ \hline &2&-9&13&\color{blue}{-6}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -18 } + \color{orangered}{ 18 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}-3&2&-3&-14&33&\color{orangered}{ -18 }\\& & -6& 27& -39& \color{orangered}{18} \\ \hline &\color{blue}{2}&\color{blue}{-9}&\color{blue}{13}&\color{blue}{-6}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 2x^{3}-9x^{2}+13x-6 } $ with a remainder of $ \color{red}{ 0 } $.