The synthetic division table is:
$$ \begin{array}{c|rrrrr}2&2&-14&27&-18&9\\& & 4& -20& 14& \color{black}{-8} \\ \hline &\color{blue}{2}&\color{blue}{-10}&\color{blue}{7}&\color{blue}{-4}&\color{orangered}{1} \end{array} $$The solution is:
$$ \frac{ 2x^{4}-14x^{3}+27x^{2}-18x+9 }{ x-2 } = \color{blue}{2x^{3}-10x^{2}+7x-4} ~+~ \frac{ \color{red}{ 1 } }{ x-2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&2&-14&27&-18&9\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}2&\color{orangered}{ 2 }&-14&27&-18&9\\& & & & & \\ \hline &\color{orangered}{2}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 2 } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&2&-14&27&-18&9\\& & \color{blue}{4} & & & \\ \hline &\color{blue}{2}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -14 } + \color{orangered}{ 4 } = \color{orangered}{ -10 } $
$$ \begin{array}{c|rrrrr}2&2&\color{orangered}{ -14 }&27&-18&9\\& & \color{orangered}{4} & & & \\ \hline &2&\color{orangered}{-10}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -10 \right) } = \color{blue}{ -20 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&2&-14&27&-18&9\\& & 4& \color{blue}{-20} & & \\ \hline &2&\color{blue}{-10}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 27 } + \color{orangered}{ \left( -20 \right) } = \color{orangered}{ 7 } $
$$ \begin{array}{c|rrrrr}2&2&-14&\color{orangered}{ 27 }&-18&9\\& & 4& \color{orangered}{-20} & & \\ \hline &2&-10&\color{orangered}{7}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 7 } = \color{blue}{ 14 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&2&-14&27&-18&9\\& & 4& -20& \color{blue}{14} & \\ \hline &2&-10&\color{blue}{7}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -18 } + \color{orangered}{ 14 } = \color{orangered}{ -4 } $
$$ \begin{array}{c|rrrrr}2&2&-14&27&\color{orangered}{ -18 }&9\\& & 4& -20& \color{orangered}{14} & \\ \hline &2&-10&7&\color{orangered}{-4}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -4 \right) } = \color{blue}{ -8 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{2}&2&-14&27&-18&9\\& & 4& -20& 14& \color{blue}{-8} \\ \hline &2&-10&7&\color{blue}{-4}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 9 } + \color{orangered}{ \left( -8 \right) } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrrrr}2&2&-14&27&-18&\color{orangered}{ 9 }\\& & 4& -20& 14& \color{orangered}{-8} \\ \hline &\color{blue}{2}&\color{blue}{-10}&\color{blue}{7}&\color{blue}{-4}&\color{orangered}{1} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 2x^{3}-10x^{2}+7x-4 } $ with a remainder of $ \color{red}{ 1 } $.