The synthetic division table is:
$$ \begin{array}{c|rrrr}-2&2&0&5&-7\\& & -4& 8& \color{black}{-26} \\ \hline &\color{blue}{2}&\color{blue}{-4}&\color{blue}{13}&\color{orangered}{-33} \end{array} $$The solution is:
$$ \frac{ 2x^{3}+5x-7 }{ x+2 } = \color{blue}{2x^{2}-4x+13} \color{red}{~-~} \frac{ \color{red}{ 33 } }{ x+2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 2 = 0 $ ( $ x = \color{blue}{ -2 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&2&0&5&-7\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-2&\color{orangered}{ 2 }&0&5&-7\\& & & & \\ \hline &\color{orangered}{2}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 2 } = \color{blue}{ -4 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&2&0&5&-7\\& & \color{blue}{-4} & & \\ \hline &\color{blue}{2}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ \left( -4 \right) } = \color{orangered}{ -4 } $
$$ \begin{array}{c|rrrr}-2&2&\color{orangered}{ 0 }&5&-7\\& & \color{orangered}{-4} & & \\ \hline &2&\color{orangered}{-4}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ \left( -4 \right) } = \color{blue}{ 8 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&2&0&5&-7\\& & -4& \color{blue}{8} & \\ \hline &2&\color{blue}{-4}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 5 } + \color{orangered}{ 8 } = \color{orangered}{ 13 } $
$$ \begin{array}{c|rrrr}-2&2&0&\color{orangered}{ 5 }&-7\\& & -4& \color{orangered}{8} & \\ \hline &2&-4&\color{orangered}{13}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 13 } = \color{blue}{ -26 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&2&0&5&-7\\& & -4& 8& \color{blue}{-26} \\ \hline &2&-4&\color{blue}{13}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -7 } + \color{orangered}{ \left( -26 \right) } = \color{orangered}{ -33 } $
$$ \begin{array}{c|rrrr}-2&2&0&5&\color{orangered}{ -7 }\\& & -4& 8& \color{orangered}{-26} \\ \hline &\color{blue}{2}&\color{blue}{-4}&\color{blue}{13}&\color{orangered}{-33} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 2x^{2}-4x+13 } $ with a remainder of $ \color{red}{ -33 } $.