The synthetic division table is:
$$ \begin{array}{c|rrrr}-3&2&0&-3&-2\\& & -6& 18& \color{black}{-45} \\ \hline &\color{blue}{2}&\color{blue}{-6}&\color{blue}{15}&\color{orangered}{-47} \end{array} $$The solution is:
$$ \frac{ 2x^{3}-3x-2 }{ x+3 } = \color{blue}{2x^{2}-6x+15} \color{red}{~-~} \frac{ \color{red}{ 47 } }{ x+3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 3 = 0 $ ( $ x = \color{blue}{ -3 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&2&0&-3&-2\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-3&\color{orangered}{ 2 }&0&-3&-2\\& & & & \\ \hline &\color{orangered}{2}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 2 } = \color{blue}{ -6 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&2&0&-3&-2\\& & \color{blue}{-6} & & \\ \hline &\color{blue}{2}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ \left( -6 \right) } = \color{orangered}{ -6 } $
$$ \begin{array}{c|rrrr}-3&2&\color{orangered}{ 0 }&-3&-2\\& & \color{orangered}{-6} & & \\ \hline &2&\color{orangered}{-6}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ \left( -6 \right) } = \color{blue}{ 18 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&2&0&-3&-2\\& & -6& \color{blue}{18} & \\ \hline &2&\color{blue}{-6}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ 18 } = \color{orangered}{ 15 } $
$$ \begin{array}{c|rrrr}-3&2&0&\color{orangered}{ -3 }&-2\\& & -6& \color{orangered}{18} & \\ \hline &2&-6&\color{orangered}{15}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 15 } = \color{blue}{ -45 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&2&0&-3&-2\\& & -6& 18& \color{blue}{-45} \\ \hline &2&-6&\color{blue}{15}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ \left( -45 \right) } = \color{orangered}{ -47 } $
$$ \begin{array}{c|rrrr}-3&2&0&-3&\color{orangered}{ -2 }\\& & -6& 18& \color{orangered}{-45} \\ \hline &\color{blue}{2}&\color{blue}{-6}&\color{blue}{15}&\color{orangered}{-47} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 2x^{2}-6x+15 } $ with a remainder of $ \color{red}{ -47 } $.